
Conformal Field Theory and Gravity
Solutions to Problem Set 5 Fall 2024

1. Conserved quantitites and spinning string

(a) The Polyakov action in conformal gauge gαβ = e2φηαβ takes the form

S = − 1

4πα′

∫
d2σ∂αXµ∂

αXµ (1)

Given a symmetry of the lagrangian L acting infinitesimally on the fields as Xµ →
Xµ + δXµ, Noether’s theorem ensures we have conserved charges

jα =
∂L

∂(∂αXµ)
δXµ (2)

In the case of Poincaré symmetry we have conserved currents for any choice of
Λµ

ν , c
µ, thus yielding

Pα
µ = T∂αXµ and Jα

µν = Pα
µXν − Pα

ν Xµ (3)

(b) The conserved momenta and angular momenta are found by integrating the currents
on the spatial slices of the worldsheet.

P µ =

∫
dσP µ

τ = T

∫
dσ∂τX

µ (4)

Jµν =T

∫
dσ ∂τX

µXν − ∂τX
νXµ (5)

Plugging the mode expansion for the closed string

Xµ = xµ + α′pµτ + i

√
α′

2

∑
n6=0

1

n
[αµ

ne
−in(τ−σ) + α̃µ

ne
−in(τ+σ)] (6)

yields

P µ = pµ, Jµν = lµν + Lµν (7)

where

lµν = xµpν − xνpµ (8)

Lµν = − i
∑
n>0

1

n
[αµ

−nα
ν
n − αν

−nα
µ
n] + (αn ↔ α̃n) (9)

It is clear then that lµν and Lµν represent the extrinsic and intrinsic angular mo-
menta of the string respectively.
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For the open string it works analogously, but now Lµν only contains one set of
oscillators. You should use the mode expansion

Xµ = xµ + 2α′pµτ + i

√
α′

2

∑
n6=0

1

n
[αµ

ne
−in(τ−σ) + αµ

ne
−in(τ+σ)] (10)

(Note the factor of 2 in front of pµ).

(c) The equations of motion and constraints are trivially verified in position space at
early times, although one could easily find the solution for all times by employing
the expansion 6.
However, that is not necessary since the energy can be obtained from the knowledge
of X0 alone.

E =

∫ 2π

0

dσ T∂τX
0 = 2πRT (11)

Hence T is the ratio between the string energy and its length, which justifies its
interpretation as the string tension

(d) The energy is given by

E =

∫ π

0

dσ T∂τX
0 = πRT (12)

while the only independent component of the angular momentum is

J12 = T

∫ π

0

dσ ∂τX
1X2 − ∂τX

2X1 = TR2

∫ π

0

cos2 σ(sin2 τ + cos2 τ) = πR2T/2

(13)
Therefore, J = J12 and thus J

E2 = 1
2πT

= α′.
This is the maximum ratio for any string configuration since the string does not
have any translational kinetic energy, and it is spinning at the maximum rate, given
that the endpoint move at the speed of light:(dx

dt

)2
+
(dy
dt

)2∣∣∣∣
σ=0,π

= 1 (14)

2. T-duality and D-branes

(a) We impose αµ
0 = α̃µ

0 because of the periodic boundary conditions

Xµ(σ = 2π)−Xµ(σ = 0) =

√
α′

2
(αµ

0 − α̃µ
0 )2π = 0 (15)

(b) Since Xµ and Xµ + 2πnR, n ∈ Z represent the same space-time point, Xµ(σ =
2π)−Xµ(σ = 0) has to vanish up to 2πmR,

Xµ(σ = 2π)−Xµ(σ = 0) =

√
α′

2
(α25

0 − α̃25
0 )2π = 2πmR (16)
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However, this indicates that X25 has been winding around the 25th direction m
times.

Figure 1: Closed strings with winding numbers m = 1, 0,−1. Here, X denotes the
compactified dimension and Y the transverse noncompact dimensions.

(c) The condition on p25 is

2πRp25 = 2πn =⇒ n

R
= p25 =

1√
2α′

(αµ
0 + α̃µ

0 ) (17)

Combining this with the previous condition, we obtain

α25
0 =

√
α′

2

(
n

R
+m

R

α′

)
(18)

α̃25
0 =

√
α′

2

(
n

R
−m

R

α′

)
(19)

(d) The quantum mechanical interpretation of this compactification is the following.
Instead of having continuous momentum in the 25’th direction, the string states
have now labels n and m, and they can be excited by αµ

−n, α̃µ
−n for µ = 0, ..., 24.

We still need to impose L0 − 1 = 0 and L̃0 − 1 = 0 on physical states, where
1 = a is the ordering ambiguity constant and L0, L̃0 are taken to be normal-ordered
(i.e. annihilations operators are put on the right of the expressions). Defining the
25-dimensional mass M2 =

∑24
µ=0 pµp

µ. The above conditions can be rearranged to

NR −NL = nm (20)

α′M2 = α′

(( n
R

)2
+

(
mR

α′

)2
)

+ 2NL + 2NR − 4 (21)

where NL and NR are the occupation numbers of the α’s and α̃’s respectively. We
observe that M2 is invariant under T-duality.

(e) The split is obvious after writing τ = 1
2
(σ+ + σ−), σ = 1

2
(σ+ − σ−) in the original

mode expansion. We can write

X = XL(σ + τ) +XR(σ − τ) (22)

where

XL = x25 + x̃25 +

√
α′

2
αµ
0σ

+ + i

√
α′

2

∑
m 6=0

α̃µ
m

m
ē−imσ+ (23)

3



XR = x25 − x̃25 +

√
α′

2
α̃µ
0σ

− + i

√
α′

2

∑
m 6=0

α̃µ
m

m
ē−imσ− (24)

Under T-duality, α̃µ
0 → −α̃µ

0 . We can also assume x25 ↔ x̃25. Under these two
operations, we indeed have that XR → −XR.

(f) The Neumann boundary conditions are already satisfied. There is no periodic
boundary condition to be imposed, thus there is no winding modes for the open
string.

(g) The interesting piece is

2α′p25τ = α′p25(σ+ + σ−) → α′p25(σ+ − σ−) = 2α′p25σ (25)

The other parts of X̂25 are obtained similarily to the closed string

(h) Note that at σ = 0, π, e−imσ+ − e−imσ− vanishes. Thus, we have

X̂25(π)− X̂25(0) = 2α′p25π = 2α′ n

R
π = 2πnR̂ (26)

Since the right-hand-side is a multiple of 2π, it denotes the same space-time point.
This mean that X25(π) and X25(0) are attached at the same space-time point x̂25,
and the momentum number n denotes the number of times the open string winds
around the compact direction.

Figure 2: Open strings with Dirichlet boundary conditions. Here the dashed planes are
identified. In our case, with only 1 compactified dimension, the plane is 25-dimensional,
it is a D24-brane, and the transverse direction is 1-dimensional

(i) Taking the limit of the compactification R → 0, one obtains that the T-dual radius
R̂ → ∞. Thus, if we consider a string theory with Neumann boundary conditions,
i.e. string theory with a D25-brane, we compactify it in one dimension, and we take
the radius to 0, this is equivalent to a string theory on uncompactified space living
on D24-branes, i.e. with one Dirichlet boundary condition.
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More generally, if we have a theory with Dp-branes, we can do this procedure of com-
pactifying and taking R → 0 on any direction. If we choose a direction transverse to
the Dp-brane, i.e. a direction which had a Dirichlet boundary condition, we obtain
back the Neumann condition and thus the brane becomes higher dimensional, we
go to a D(p+1)-brane.1 However, if we (compactify + R → 0) a direction along the
brane, we turn a Neumann b.c. to a Dirichlet b.c. and reduce to a D(p− 1)-brane
(as we did in the exercise).

1We usually say that the D(p+ 1)-branes wraps the corresponding compactification circle
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