Conformal Field Theory and Gravity

Solutions to Problem Set 5 Fall 2024

1. Conserved quantitites and spinning string

(a)

The Polyakov action in conformal gauge g5 = €2*145 takes the form

S = 208, X,0° X" (1)
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Given a symmetry of the lagrangian £ acting infinitesimally on the fields as X* —
X* 4+ X" Noether’s theorem ensures we have conserved charges
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In the case of Poincaré symmetry we have conserved currents for any choice of
A", ¢, thus yielding

=T9°X, and J2, =PX, - P°X, (3)

The conserved momenta and angular momenta are found by integrating the currents
on the spatial slices of the worldsheet.

p :/dan :T/da&X“ (4)
JH :T/da 0, XHXY — 0. X" X" (5)

Plugging the mode expansion for the closed string

XH =o'+ o'pt T+Z\/ Z Hemin(1=0) 4 GHe=in(rHo)] (6)

nto
yields
Pl = pt = B 4 [ (7)
where
M = axtp” — x¥pt (8)
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LM = —izn[a“ ay — o ol + (ay, <> Q) (9)

n>0

It is clear then that [ and L* represent the extrinsic and intrinsic angular mo-
menta of the string respectively.



For the open string it works analogously, but now L* only contains one set of
oscillators. You should use the mode expansion
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(Note the factor of 2 in front of p*).

(¢) The equations of motion and constraints are trivially verified in position space at
early times, although one could easily find the solution for all times by employing
the expansion [6]

However, that is not necessary since the energy can be obtained from the knowledge
of X alone.

21
E = / do T, X" = 2nRT (11)
0

Hence T is the ratio between the string energy and its length, which justifies its
interpretation as the string tension

(d) The energy is given by
E= / do T, X" = nRT (12)
0

while the only independent component of the angular momentum is

J2=T / do 0.X'X? — 0, X*X' = TR? / cos® o(sin® 7 + cos® 7) = TR*T /2
0 0

(13)
Therefore, J = J'? and thus % = % =da.

This is the maximum ratio for any string configuration since the string does not
have any translational kinetic energy, and it is spinning at the maximum rate, given

that the endpoint move at the speed of light:
drN\2 /dy\?
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2. T-duality and D-branes

(a) We impose o = a} because of the periodic boundary conditions
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X¥(o=2m)—X*(oc=0)= 5(046‘—075)27?20 (15)

(b) Since X* and X* + 27mnR, n € Z represent the same space-time point, X*(o =
27) — X#(0 = 0) has to vanish up to 27mR,

/
X*o=2m)— X*(o=0)= \/%(ag5—6g35)27r:27rmR (16)



However, this indicates that X?° has been winding around the 25th direction m
times.

(a) \ \ '

Figure 1: Closed strings with winding numbers m = 1,0, —1. Here, X denotes the
compactified dimension and Y the transverse noncompact dimensions.

(c) The condition on p* is

IRp® = 2mn —> & — P = (o + ab) (17)
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Combining this with the previous condition, we obtain
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(d) The quantum mechanical interpretation of this compactification is the following.
Instead of having continuous momentum in the 25’th direction, the string states
have now labels n and m, and they can be excited by o”,, &, for p = 0,...,24.
We still need to impose Ly — 1 = 0 and Ly — 1 = 0 on physical states, where
1 = a is the ordering ambiguity constant and Ly, Ly are taken to be normal-ordered
(i.e. annihilations operators are put on the right of the expressions). Defining the
25-dimensional mass M? = Ziio pup!. The above conditions can be rearranged to

NR—NL:nm (20)

n\ 2 mR 2

where Ny and Ng are the occupation numbers of the a’s and &’s respectively. We
observe that M? is invariant under T-duality.

e) The split is obvious after writing 7 = (6t +07), 0 = 3(67 — 07) in the original
g B 2 g
mode expansion. We can write

X =Xr(oc+7)+ Xg(oc—71) (22)
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where



/ / s
Xp=a® =& 4\ [ Saho™ +iy[ 5 Y e (24)
m##0
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Under T-duality, aff — —ah. We can also assume 1?° <> 7%°. Under these two

operations, we indeed have that Xz — —Xpg.

(f) The Neumann boundary conditions are already satisfied. There is no periodic
boundary condition to be imposed, thus there is no winding modes for the open
string.

(g) The interesting piece is

/,.25 /25

20'p?r = a'p*® (0t +07) = PP (0t —07) = 2P0 (25)

The other parts of X2 are obtained similarily to the closed string

(h) Note that at o =0, , e~imoT _ e=imo~ yanishes. Thus, we have
N N n A
X®(1) — X?(0) = 2a/p*1 = 20/E7r = 27nR (26)
Since the right-hand-side is a multiple of 27, it denotes the same space-time point.
This mean that X?5(7) and X?°(0) are attached at the same space-time point 2%,

and the momentum number n denotes the number of times the open string winds
around the compact direction.
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Figure 2: Open strings with Dirichlet boundary conditions. Here the dashed planes are
identified. In our case, with only 1 compactified dimension, the plane is 25-dimensional,
it is a D24-brane, and the transverse direction is 1-dimensional

(i) Taking the limit of the compactification R — 0, one obtains that the T-dual radius
R — 0. Thus, if we consider a string theory with Neumann boundary conditions,
i.e. string theory with a D25-brane, we compactify it in one dimension, and we take
the radius to 0, this is equivalent to a string theory on uncompactified space living
on D24-branes, i.e. with one Dirichlet boundary condition.
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More generally, if we have a theory with Dp-branes, we can do this procedure of com-
pactifying and taking R — 0 on any direction. If we choose a direction transverse to
the Dp-brane, i.e. a direction which had a Dirichlet boundary condition, we obtain
back the Neumann condition and thus the brane becomes higher dimensional, we
go to a D(p+ 1)-branel]] However, if we (compactify + R — 0) a direction along the
brane, we turn a Neumann b.c. to a Dirichlet b.c. and reduce to a D(p — 1)-brane
(as we did in the exercise).

'We usually say that the D(p + 1)-branes wraps the corresponding compactification circle



